453 research outputs found

    Atmosphere-Ocean Ozone Exchange – A Global Modeling Study of Biogeochemical, Atmospheric and Water-Side Turbulence Dependencies

    Get PDF
    The significance of the removal of tropospheric ozone by the oceans, covering ~2/3 of the Earth's surface, has only been addressed in a few studies involving water tank, aircraft, and tower flux measurements. On the basis of results from these few observations of the ozone dry deposition velocity (VdO3), atmospheric chemistry models generally apply an empirical, constant ocean uptake rate of 0.05 cm s-1. This value is substantially smaller than the atmospheric turbulent transport velocity for ozone. On the other hand, the uptake is higher than expected from the solubility of ozone in clean water alone, suggesting that there is an enhancement in oceanic ozone uptake, e.g., through a chemical destruction mechanism. We present an evaluation of a global-scale analysis with a new mechanistic representation of atmosphere-ocean ozone exchange. The applied atmosphere chemistry-climate model includes not only atmospheric but also waterside turbulence and the role of waterside chemical loss processes as a function of oceanic biogeochemistry. The simulations suggest a larger role of biogeochemistry in tropical and subtropical ozone oceanic uptake with a relative small temporal variability, whereas in midlatitude and high-latitude regions, highly variable ozone uptake rates are expected because of the stronger influence of waterside turbulence. Despite a relatively large range in the explicitly calculated ocean uptake rate, there is a surprisingly small sensitivity of simulated Marine Boundary Layer ozone concentrations compared to the sensitivity for the commonly applied constant ocean uptake approach. This small sensitivity points at compensating effects through inclusion of the process-based ocean uptake mechanisms to consider variability in oceanic O3 deposition consistent with that in atmospheric and oceanic physical, chemical, and biological processe

    Sesquiterpene emissions from vegetation: a review

    No full text
    International audienceThis literature review summarizes the environmental controls governing biogenic sesquiterpene (SQT) emissions and presents a compendium of numerous SQT-emitting plant species as well as the quantities and ratios of SQT species they have been observed to emit. The results of many enclosure-based studies indicate that temporal SQT emission variations appear to be dominated mainly by ambient temperatures although other factors contribute (e.g., seasonal variations). This implies that SQT emissions have increased significance at certain times of the year, especially in late spring to mid-summer. The strong temperature dependency of SQT emissions also creates the distinct possibility of increasing SQT emissions in a warmer climate. Disturbances to vegetation (from herbivores and possibly violent weather events) are clearly also important in controlling short-term SQT emissions bursts, though the relative contribution of disturbance-induced emissions is not known. Based on the biogenic SQT emissions studies reviewed here, SQT emission rates among numerous species have been observed to cover a wide range of values, and exhibit substantial variability between individuals and across species, as well as at different environmental and phenological states. These emission rates span several orders of magnitude (10s?1000s of ng gDW-1 h?1). Many of the higher rates were reported by early SQT studies, which may have included artificially-elevated SQT emission rates due to higher-than-ambient enclosure temperatures and disturbances to enclosed vegetation prior to and during sample collection. When predicting landscape-level SQT fluxes, modelers must consider the numerous sources of variability driving observed SQT emissions. Characterizations of landscape and global SQT fluxes are highly uncertain given differences and uncertainties in experimental protocols and measurements, the high variability in observed emission rates from different species, the selection of species that have been studied so far, and ambiguities regarding controls over emissions. This underscores the need for standardized experimental protocols, better characterization of disturbance-induced emissions, screening of dominant plant species, and the collection of multiple replicates from several individuals within a given species or genus as well as a better understanding of seasonal dependencies of SQT emissions in order to improve the representation of SQT emission rates

    The role of ozone atmosphere-snow gas exchange on polar, boundary-layer tropospheric ozone ? a review and sensitivity analysis

    Get PDF
    International audienceRecent research on snowpack processes and atmosphere-snow gas exchange has demonstrated that chemical and physical interactions between the snowpack and the overlaying atmosphere have a substantial impact on the composition of the lower troposphere. These observations also imply that ozone deposition to the snowpack possibly depends on parameters including the quantity and composition of deposited trace gases, solar irradiance, snow temperature and the substrate below the snowpack. Current literature spans a remarkably wide range of ozone deposition velocities (vdO3); several studies even reported positive ozone fluxes out of the snow. Overall, published values range from ~?

    A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tether balloon, and sonic anemometer, Atmos

    Get PDF
    Abstract This paper focuses on the use of an acoustic sounder, or sodar, during the 2003 Antarctic Tropospheric Chemistry Investigation (ANTCI), to document the behavior of very shallow (o50 m) stable boundary layers thought to be one of the critical factors for explaining the very high levels of nitric oxide (NO) found in past field experiments at the South Pole. The use of a tethered balloon, profiling wind, temperature, NO, and ozone provided for a detailed interpretation of sodar data for the period 12-30 December 2003. For the same period, sonic anemometer 2-m turbulence measurements, averaged to 0.5 h, linked surface processes to the evolution of the boundary layer in response to changing radiative balance and synoptic weather changes. A mixing-layer detection method was developed and applied to half-hour average sodar amplitude profiles for the period 23 November-30 December 2003. These data also allowed for testing of simple diagnostic equations for the mixing-layer depth as well as estimates of vertical diffusion rates under stable conditions, the latter being important for the effective depth of the mixing layer vis-a`-vis the nonlinear NO chemistry postulated from earlier analyses. With the extended sampling period, two sub-seasonal regimes were examined: (1) a late-December period, with the full suite of supporting measurements, where the earlier results that shallow mixing layers associated with light winds and strong surface stability can be among the dominant factors leading to high NO levels were repeated and (2) a late November period that revealed additional complexities with very high NO concentrations appearing at times in concert with higher winds, weaker surface stability, and deeper mixing layers. The latter results are only consistent with a more complicated picture of how NO can build to very high levels that involves invoking the previously expressed dependence of elevated NO levels on nonlinear NO x (NO x ¼ NO+NO 2 ) chemistry, greater fluxes of NO x from the snowpack than previously observed at the South Pole, and the potential for enhanced NO x accumulation effects involving air parcels draining off the high platea
    • …
    corecore